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Abstract—A low-loss and compact optical delay element is
devised to be integrated into existing White cell-based true-time
delay systems. The delay element is based on a multiple-bounce
cell that consists of simple optical components, which was initially
described by Claude Robert for spectroscopy. We hereby provide
a comprehensive analysis of the Robert cell and propose that it can
be modified in a number of ways to produce discrete and variable
time delays up to hundreds of ns. The Robert cell show appealing
traits compared to traditional optical delay devices because it
relies on reflections within a system of mirrors to produce time
delays, and this mechanism reduces the physical size and optical
losses compared to traditional approaches for long delays. We
also illustrate how modified Robert cells can be designed such that
they can be compatibly combined with White cell-based true-time
delay systems.

Index Terms—Phased arrays, optical delay lines, optical signal
processing, optics.

I. INTRODUCTION

O PTICAL time delays are important for such appli-

cations as steering phased array antennas, tapped or

programmable delay lines for matched filtering, optical cor-
relation, and signal processing, and potentially even optical

buffering if long enough delays can be produced without

excessive loss and cost. In this work, we propose new methods

for obtaining long and variable optical delays that can be used

for the systems mentioned above, and we provide a detailed

examination on how the new device can be combined with

existing optical true-time delay (TTD) systems.

In the example of phased-array antennas, they are made up

of a series of independent, small-element antennas that jointly

produce a concentrated electromagnetic beam propagating at

desired directions [1]. To control their emission and reception

directions, each antenna element must be phase-shifted or time-

delayed by a precise amount. For broadband radar systems, TTD

must be used because they prevent beam squint, where different

frequencies travel in different directions [2]. Optical TTD sys-

tems are attractive because of their low weight and high degree
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of flexibility, and more recently, a free-space approach to optical
TTD was demonstrated based on the White cell, which has the

lowest size, weight, and power of any known system [3]. The

longest delay in that system was 25 ns; in this work, we describe

ways with which we can achieve much longer delays.

One type ofWhite cell-based TTD system is the binaryWhite

cell [4], which consists of two White cells that share a common

micro-electro-mechanical system (MEMS) mirror arrays. One

White cell acts as a switching engine and the other includes op-

tical delay elements. Traditional delay elements include dielec-

tric blocks, lens trains, and optical fibers. Dielectric blocks are
only appropriate for very short delays on the order of picosec-

onds, because as the blocks get longer they begin to block the

beams circulating in the White cell. Larger delays implemented

in lens trains can become prohibitively long and require many

discrete lenses with precise alignment, which is a very tedious

and difficult process. Lens trains may be used for delays up to
around 25 ns. Up to now, achieving longer delays has required

fibers, which also introduce alignment issues, coupling losses,
and dispersion [5].

To reduce the loss and physical sizes of the delay elements,

we propose a free-space multipass reflection system that can be
integrated into a White cell-based TTD system. We adopt the

Robert cell [6], which is already low-loss and compact, as the

basis for our new delay elements, and we design modifications
that make it a delay element compatible with the binary White

cell architecture.

We begin our discussion in Section II by briefly reviewing
the principles of operations for both the White cell and the

binary cell. In Section III, we present an overview of the Robert

cell and provide analyses and derivations of its properties.

Section IV contains a detailed description of our modifications
of the Robert cell and how we can incorporate them into a

binary cell system. We finish our discussion in Section V,
which includes summaries and conclusions.

II. BINARY WHITE-CELL-BASED TTD DEVICE

A. White Cell

The White cell [7] consists of three spherical mirrors A, B,

C with the same radii of curvature. Shown in Fig. 1, mirrors

A and B are placed on the same side, and they are separated

from mirror C by a distance equal to the radius of curvature.

The center of curvatures of mirrors A and B are adjusted such

that they are a small distance apart from each other. When an

array of focused beams enters the White cell through the input

turning mirror, the spots are refocused by either mirror A or B,
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Fig. 1. Structure of a White cell. A focused beam enters the system through
the input turning mirror, and mirrors A and B reimage the beam onto mirror C.
The input can be a single spot or an array.

forming a new array of imaged and non-overlapping spots on

mirror C.

B. Binary Cell

The binary White cell is a specific adaptation that can be con-
ceived as essentially two independent White cells that share a

MEMS micromirror array, which can switch the beams from

one cell to the other.

The structure of a binary White cell is shown in Fig. 2(a),

which contains cells AB and CD. The spot patterns are shown

in Fig. 2(b). When a row of focused beams enters the system

via the input turning mirror, the beams diverge and hit mirror B,

which re-images the beams onto the first row of pixels on the
MEMS. The MEMS can now be used as the switching engine.

For each cycle of operation, for those MEMS pixels that are flat,
the corresponding beams travel to mirror A and get imaged back

onto the first row of the auxiliary mirror. The auxiliary mirror
reflects the beams back onto mirror B, which focuses the beams
onto the second row of the MEMS. On the other hand, if some

of the MEMS pixels are tilted, then the selected beams reach

mirror C, which focuses those beams into the first row of the
delay plane. The outputs of the delay plane hit mirror D and are

also focused back onto the second row of the MEMS [4].

During each cycle of operation, the null cell AB adds no ex-

cess delay to the beams, whereas the delay plane typically adds

a time delay that is proportional to , where is the cycle of

operation. After cycles, the binary cell can produce a max-

imum time delay that is proportional to [4].

III. PROPERTIES OF THE ROBERT CELL

Next, we discuss the Robert cell and how it can be incorpo-

rated into a binary-style White cell TTD device. The Robert cell

has a very similar structure compared to the well-known Her-

riott cell [8]. In fact, both the White cell and the Heririott cell

are special cases of the Robert cell [6]. We will first examine the
properties of the Herriott cell before analyzing the Robert cell.

A. The Herriott Cell

The Herriott cell (Fig. 3) consists of two spherical mirrors,

M1 and M2, placed on the same optical axis facing each other

Fig. 2. (a) Structure and spot patterns of a binary White cell system. (b) Spot
patterns created from a binary White cell [4].

Fig. 3. Structure of a Herriott cell. M1 and M2 are both spherical mirrors, sep-
arated by a distance .

[8]. A beam can enter from an aperture on mirror M2, and it

reflects within the cell and exits though the same aperture. As
the beam circulates, it forms a series of spots on the mirrors,

which we analyze next.

1) Ray Matrix: The spot patterns of the Herriott cell can be
derived using paraxial ray matrices. Each ray can be described

by a 4 1 ray vector, , where and are the

positions of the rays at a specified plane, and and are the

corresponding slopes of the rays. In a three dimensional space,

each optical component or ray operation can be described by a

4 4 matrix. For a Herriott cell, the operations on a ray comes

either from a spherical mirror with a radius of curvature or



1008 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 7, APRIL 1, 2013

Fig. 4. Herriott cell’s spot patterns. The indices next to the spots represent the
number of reflections that the beam has experienced.When the distance between
the mirrors is increased, the angle between successive reflections increase, and
thus the period becomes smaller. Mirror parameters: mm,
.

from traveling a distance , and their matrix representations are

and , respectively [9], given as

(1)

(2)

The operation of the Herriott cell on a ray is periodic because

in each cycle, the ray first travels a distance , gets reflected by
mirror M1, travels another distance , and hits mirror M2. Thus,

each cycle of operation can be represented by [9]

(3)

Given the initial ray vector , the ray vector after cycles

becomes [9]

(4)

Shown in Fig. 4, the Herriott cell spot patterns form elliptical

shapes, and the angle between two successive spots is given by

, where [6], [8]

(5)

When satisfies , where is an integer, the

spot pattern becomes periodic in that it repeats itself after

cycles. At the th cycle, the beam exits the system through the

same aperture from which it entered.

2) Difference Equations: Amathematical approach that pro-
vides more insight to the Herriott cell system is via the differ-

ence equations analysis. Knowing the transfer matrix for each

cycle and given the current state ray vector , we can calculate

the next state ray vector, , according to (3) using matrix

multiplication, which results in a system of four coupled equa-

tions. Due to symmetry in the and directions, we only have

to show the equations in the direction because the equations

in the direction assume the same form of

(6)

(7)

where, from (1), (2), and (3), we have

(8)

These equations can be solved by combining the equations

into a single-variable second order difference equation, and then

guessing a homogeneous solution , where is

the initial input location and is a complex number. The final
forms of their solutions are

(9)

(10)

where and are determined by the initial conditions of po-

sition and slope, and

(11)

Thus, the difference equation approach yields the same result

obtained by Herriott and Robert in (5). We will also use this

technique in section for the Robert cell spot pattern analysis.

Equations (9) and (10) demonstrate that the solutions for both

the positions and slopes of the spot patterns are parametric sine

and cosine equations, implying that the evolution of both the ray

positions and their slopes follow elliptical trajectories.

B. The Robert Cell

The structure of the Robert cell shown in Fig. 5(a) is almost

identical to that of a Herriott cell. The only difference is that the

mirror on the input side, M2, is split in half along the -axis.

While the top half of the mirror (M2 ) is fixed, the lower half
(M2 ) is allowed to rotate by an arbitrary angle about the

-axis [6].

The mathematical formulism for the Robert cell system is

largely similar to that of the Herriott cell, and the ray matrix

and difference equation techniques can both be applied.

1) Ray Matrix: When a ray enters the Robert cell system, it
bounces either between M1 and M2 when or between

M1 and M2 when . When M2 is struck, the cell acts as

if it was a normal Herriott cell, and the same ray matrix shown

in (1) can be applied. However, if the ray hits M2 tilted at an

angle , the slope in the direction will be further deflected
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Fig. 5. (a) Structure of a Robert Cell. (b) Spot patterns formed by the Robert
cell under different angles of rotation. Cell parameters: 420 mm,

40.1 mm.

by . To account for this new term, the ray matrix for a

spherical mirror in (1) is modified to be

(12)

Now, the next state ray vector can be computed as:

(13)

(14)

Some examples of the Robert cell spot patterns are shown in

Fig. 5(b), where the cell parameters are chosen such that they

would produce patterns whose periodicity is 10 if they were

used in the Herriott cell. These patterns show that as predicted,

the -positions of the spots are still periodic with a periodicity

. However, for every cycles, when the -position

returns to its initial value, the spots’ -positions shift linearly by

, a quantity that decreases as decreases. The spots seem to

swirl toward the center of the mirrors; upon reaching the center,

they start to swirl out again. It is then appropriate to define every
cycles of the Robert cell to be one “swirl,” andmultiple swirls

are denoted by swirls.

The results in Fig. 5(b) also demonstrate that the Robert cell

has the potential to be used as a compact delay element. For

example, with the mirror separation of merely mm,

the beam traveled for 2.807 m in the case where and

, which corresponds to a time delay of 9.36 ns. To

achieve the same delay with the lens train requires the system

to be 1.4 m long and may require many lenses that have dif-

ferent focal lengths depending on the spot size and the number

of spots. Thus, the Robert cell shows great promise in shrinking

the physical dimensions of the true-time delay system.

On top of that, the amount of loss corresponding to the Robert

cell is expected to be low because of the use of reflection. High-
reflectivity coating on mirrors can be made better than anti-re-
flection coatings on lenses, and lenses have two surfaces instead
of one. If the device is built with a dielectric mirror that has a

reflectivity of 0.999, the amount of loss produced after 70 re-
flections in Fig. 6 (a time delay of 9.36 ns) would merely be
0.999 0.93 0.304 dB.

2) Difference Equations: Recall that the lower mirror’s angle
rotation about the -axis has no effect on the position or slope

in the direction. Therefore, (9) and (10) still hold for and .

The difference equation analysis in the -direction, however,

must be split up into two scenarios. When the ray hits M2 and

matrix is applied to the ray vector, we can readily use (9)

and (10). Nonetheless, if the ray hitsM2 and is applied,

will be further deflected by , resulting in the following

coupled difference equations:

(15)

(16)

where inherit the same form as they did in (8).

When these equations are solved using the same procedures

as we used in solving the Herriott cell, we obtain solutions that

contain a homogeneous part composed of sinusoidal functions

and a particular part that varies linearly with respect to .

The final forms of these equations are as follows:

(17)

(18)

where . The values , and are deter-

mined by the initial conditions and cell parameters,

and are all identical to their forms in (8) and (11).

3) Interpretation of the Difference Equation Solutions: The
interpretation of the Robert cell solutions is not a trivial task,

because in different cycles, the ray may strike M2 or M2 ,
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Fig. 6. Front view of the Robert cell designs that allow beams to enter from
different input locations to achieve different time delays. (a) Allows beams to
exit after full swirls, whereas (b) allows beams to exit after swirls.

each of which corresponds to a different solution. The result of

this is the analysis of piece-wise discrete parametric equations

in the and directions. To simplify our analysis, we choose

to examine the case where satisfies the periodicity condition,
where the period. We further require to be an

even integer.

a) Solutions in the -Direction: In the -direction, the po-

sition and slope are independent of the rotational angle , so the

sinusoidal solutions shown in (9) and (10) can be used regard-

less of whether the ray hits M2 orM2 . Thus, for every cy-

cles (or full swirls), the position and slope in returns to their

input values; for an extra cycles (or at swirls), the

sinusoidal nature of the solutions implies that the position and

slope in would simply be the negative of the input values.

b) Solutions in the -Direction: The solutions in the
-direction require a more systematic treatment. When the

ray travels onto M2 , we need to use (9) and (10), whereas

a ray that lands on M2 would need solutions in (17) and

(18). Because the solutions for both the position and slope take

on the same form, we can start analyzing the behavior of the

-position and obtain the same insight for the -slope.

TABLE I
ITERATIVE ANALYSIS OF THE RAY POSITION FOR EVERY HALF SWIRL

Assume that a ray is sent into the system with

, and so that it begins its operations on M2 .

To further simplify our discussion, we choose an input slope

such that it eliminates the sine term. If we restrict our analysis to

multiples of 1/2 swirls, the cosine term merely alternates being

or 1, and solutions in the -position can now be described

as

(19)

(20)

where and are arbitrary constants that depend on the cur-

rent ray position, denotes the number of swirls and is re-

stricted to be multiples of 1/2, and ,

which represents the linear term in (17).

We can now iteratively analyze the ray position for every half

of a swirl as presented in Table I. For every half swirl, we need

to first determine which mirror the ray hits and what equation
we will apply, and then we need to update the values of or

according to the current ray position. This analysis demonstrates

that for each swirl, the ray’s position is linearly shifted by

. This is significant because we can control the number of
swirls (and thereby the time delay) by adjusting the angle of

rotation for M2 ; the smaller the angle, smaller the , and

hence the more the swirls and the longer the time delay. Table I

also shows that an addition of 1/2 a swirl reflects the positions
of the ray across the origin, thus flipping their signs.
The analysis for the -slope yields similar results.

For each full swirl, the Robert cell adds on

to the previous slope value.

Usually, is a very small quantity on the order of 0.01. Any

additional 1/2 swirl flips the sign of the previous slope value.
4) Robert Cell Properties: The implications of the mathe-

matical solutions can be summarized into the following proper-

ties of a Robert cell system with swirls.

Property 1, Position in : For cycles, the position

in is the same as that of the input, .

Property 2, Slope in : For cycles, the slope in

is the same as that of the input, .

Property 3, Position in : For every swirl, the position in
shifts by that is calculated as

(21)
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After swirls, the ray’s position in becomes

.

Property 4, Slope in : For every swirl, the slope in shifts

by a small quantity calculated as

(22)

After swirls, the ray’s slope becomes

.

Property 5, Additional 1/2 Swirl: For any additional 1/2
swirl, the ray’s positions and slopes simply are simply the

negative of their previous states.

Of all the properties of the Robert cell, Property 4 is the most

unusual and intriguing. Unlike many commonly used optical

components, the device adds a constant angle in the -direction

to an input ray regardless of the input angle. This is different

from a mirror or a prism, the former of which reflects a beam at
the same angle as the angle of incidence, and the latter of which

rotates the beam’s angle by a quantity determined by the input

angle.

C. White Cell’s Relationships to the Robert Cell

As mentioned before, the White cell and the Herriott cell can

be considered as special cases of the Robert cell [6]. In a Herriott

cell, when M2 is split in half, it creates a three-mirror system,

where M2 andM2 share the same center of curvature. How-

ever, when M2 is rotated by a small angle, its center of cur-

vature (CC) is shifted slightly from that of M2 , much similar

to the way the objective mirrors in a White cell have slightly

different CCs [6]. Furthermore, the spot patterns of the Robert

cell and the White cell have analogous characteristics. In each

cycle, the White cell produces spots that are in rows or columns

on mirror C, whereas Fig. 5(b) shows that the Robert cell creates

rows of spots for every cycles. Furthermore, the Robert

cell’s mathematical formalism suggests that if ,

rows of spots can be produced during each cycle without any

intermediate spots. Therefore, the White cell is a case of the

Robert cell whose radii of curvatures for all of the mirrors are

equal to their distance of separation [6].

D. Imaging Conditions

To practically implement a delay element into a White cell-

based system, the delay device should allow the input of a set

of beams focused to an array of spots, and the delay element’s

output beams should also be focused. For a Robert cell system,

there are three degrees of freedom with parameters , and

. These parameters must be chosen to satisfy the periodicity

constraint in (5) and the input-output focusing constraint. On

top of that, one can specify a distance to obtain the desired

time delay increment. Therefore, we have three variables and

three equations to solve.

For the output beam to image, we chose to design Robert

cells that focus the beams for every 1/2 swirl, or cycles,

in which case the beam will also be focused at the output after

or swirls.

We obtain the equation that satisfies imaging using the
ray matrix analysis. For a general ray transfer matrix

, if , then the imaging condition is

satisfied. Note that the imaging condition for the Robert cell is
the same as that of the Herriott cell provided that the angle of

rotation is small, so we can work with (4) to determine the

transfer matrix after cycles by extracting the value of

the matrix .

The value is a function of , and , and it is typically a

complicated nonlinear equation. Combined with the periodicity

constraint, the values of , and are best solved numer-

ically. If we want a cell to have a time delay of 2 ns per swirl

with a periodicity of , we can set the distance between

the mirrors to be mm. To satisfy both the imaging and

the periodicity constraint, the radii of focus are calculated to be

mm and mm .

IV. MODIFICATIONS TO THE ROBERT CELL AND THEIR

INTEGRATION INTO THE WHITE CELL

A. Variable Time Delays Within a Single Cell

The first set of modifications to the Robert cell is that M2
and M2 can be shaped such that the device allows the rays

to enter and exit from different positions whose -coordinates

are multiples of . Each input location also corresponds to

a different amount of delay. The schematics of these two de-

signs are displayed in Fig. 6, which shows three different input

locations that are labeled with different colors. All intermediate

spots are hidden except for those that have undergone multiples

of cycles (or half a swirl), and they are indexed in terms of

with their corresponding colors. Part (a) shows a design that

allows the beam to make a full swirls, whereas the design in

part (b) allows the beam to make swirls. By cutting

off the edges of mirrors M2 and/or M2 , only the input and

output locations miss the mirrors to communicate with the space

outside and all intermediate reflections are contained within the
cell. For input locations farther from the center of the device,

the ray experiences more swirls and thus carries a longer time

delay.

The input and output conditions are different for these two

schematics. For the device shown in Fig. 6(a), the Cartesian

coordinate of their input and output relationships are

(21)

Equation (21) can also be represented pictorially as shown in

Fig. 7(a). For a Robert cell that performs swirls, the input

beam position is reflected about the -axis. The output beam

slopes relate to the input slopes as follows: In the direction,

the slope of return equals to that of incidence, just as a mirror;

in the direction, the slope is also similar to a beam striking a

mirror, except the slope in the -direction is additionally rotated

by a small quantity , which is specified by the angle offset due
to the tilt of M2 .
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Fig. 7. Top- and side-view illustrations of the Robert cell input and output re-
lationships. (a) Device that performs full swirls. (b) Device that performs

swirls.

Whereas, for device in Fig. 6(b), we have

(22)

The relationships in (22) are also depicted in Fig. 7(b), which

shows that for a Robert cell that performs swirls, the

input position is reflected across the -axis. The output beam

travels in a direction that is almost anti-parallel to the input

beam, except that the slope in the -direction is rotated by .

B. Robert Cell Coupling

To create much longer time delays, two Robert cells can be

coupled using a spherical mirror. For ultra-long delays, two of

the same cells shown in Fig. 6(b) are used as shown in Fig. 8.

When a beam first enters cell 1, it exits after swirls and

impinges onto the auxiliary spherical mirror . ’s center

of curvature is positioned such that it reflects the output of the
first Robert cell onto the input of cell 2, whose output returns
back into the input of cell 1 via at the new location. The

beam is delayed further, and returns to the second Robert cell

again at a new location. Thus, the input beam bounces back and

forth between these two cells some number of times, accumu-

lating very long delays. Due to the small angular rotation in

(22), the ray is slowly rotated to the left for every time it enters

a cell, and the beam will eventually miss mirror and exit

from the output position of cell 2.

A single Robert cell that has a mirror separation of a few

centimeters can achieve a delay on the order of 10 to 20 ns.

Fig. 8. Coupled Robert cell system. Mirror is placed such that the output
of one cell is reflected to the input of the other cell.

Fig. 9. Employing a single modified Robert cell as a delay plane for the Binary
cell. Unfortunately, a line connecting the output locations is not parallel to a line
connecting the input locations.

With the coupled Robert cell, however, delays on the order of

100 ns can be easily obtained.

C. Robert Cell as a Delay Element for the Binary Cell

As discussed in Section II, the binaryWhite cell needs a delay

plane whose amount of delay varies with the input position.

Thus, both of the Robert cell configurations in Fig. 6 are com-
patible to this requirement. We choose to adopt the design in

Fig. 6(a) because all of its swirls are full integers, making its

analysis easier. Because the input positions of the Robert cell are

slanted, the cell needs to be rotated such that a line joining the

input locations is vertical as shown in Fig. 9, so that it matches

the arrangement of the light beams on the MEMS.

Now, however, the line joining the output beam locations is

not parallel to the line of input beam locations. Normally in the

White cell, the beams leaving the delay plane are re-imaged onto

the MEMS by a single objective mirror, e.g., Mirror D in Fig. 2.

The output beams from the Robert cell are on a diagonal, which

will not map to the MEMS columns properly. If we would like

to keep this design, we will have to use one spherical mirror

for each output position to re-image the beams onto the desired

MEMS locations.
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Fig. 10. (a) Top view of the dual Robert cell system coupled with mirror E
used as a delay plane. (b) The structure of the coupled Robert cell showing all
the possible beam spots. (c) The trajectory of a beam if it were to be sent into
the delay plane.

The addition of many spherical mirrors can make the system

somewhat cumbersome. A better solution is coupling two

Robert cells using the integer-swirl design in Fig. 6(a) (as op-

posed to coupling two half-integer-swirl designs as in Figs. 6(b)

and 8), using a spherical mirror E. The new design’s top-view

schematic is shown in Fig. 10(a), and its front view with Mirror

E’s center of curvature is shown in Fig. 10(b). When an array

of input beams is sent into an input location of Cell 1, mirror

E images the output beams of Cell 1 onto the corresponding

input location of Cell 2. Fig. 10(b) demonstrates that the line

connecting the output locations of the second cell is parallel to

the line connecting the input locations. This makes it possible

to use spherical mirror D to send the beams to the auxiliary

Fig. 11. Top view of a White-cell-based TTD device that uses the Robert cell
as its delay plane.

mirror and then back onto the next column of the MEMS.

Fig. 10(c) provides one example of the spot patterns formed

in the case where the beams are switched into the delay plane

by the MEMS. The indices 0 through 7 show the order of the

spot locations. At the end of step 7, the output beams from the

coupled Robert cell system are imaged onto the next column of

the MEMS as desired.

When the Robert cells are integrated into the White cell, they

are placed at the delay plane location as seen in Fig. 11. As a set

of beams is selected to be delayed, the MEMS can reflect the
beams ontomirror C, which sends the beams into the first Robert
cell. The beams eventually come out of the second Robert cell,

whereupon they diverge ontomirror D, which focuses the beams

back onto the next row or column of the MEMS.

During the th cycle of the binary White cell, while a tradi-

tional delay plane produces a delay that is proportional to , the

Robert cell provides a delay proportional to . Thus, over cy-

cles of operations with the smallest time increment , the max-

imum achievable time delay for the Robert cell, ,

much similar to a quadratic White cell [10].

One potential source for concern would be the accumu-

lation of aberrations over potentially hundreds of bounces.

To minimize the aberrations (specifically astigmatism due

to beams striking spherical mirrors at varying angles), two

solutions present themselves. One option is to keep the angles

of incidence small, which means lengthening the cell. While

this also reduces the total number of bounces for a given delay,

and thus further reduces aberration, it has to be traded off

against the larger overall size. Another potential solution is

to use toroidal mirrors to correct for astigmatism. The use of

astigmatic mirrors in a Herriot cell will perturb the spot pattern

[11]; probably the degree of astigmatism needed to correct

the aberration due to off-axis beams is small enough not to

affect the spot placement significantly, but would have to be
accounted for during the design process. In previous work with

White cells [3], a path containing 40 mirror reflections had very
little loss due to aberration, using a combination of these two

approaches ( and very slightly toroidal mirrors).
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V. SUMMARY

In this paper, we have discussed the way by which the Robert

cell can be used as delay elements for existing optical TTD sys-

tems. We first reviewed the structure of the Robert cell, which
is a three-mirror-system that allows light to experience mul-

tiple reflections and travel a long distance compared to its phys-
ical dimensions. Through ray matrix and difference equation

analyses, we have derived the spot patterns and the properties

of the Robert cell, allowing us to design variations of the Robert

cell as the delay element for the White cell-based TTD system

with the Binary cell structure. Compared to traditional delay el-

ements such as glass blocks, lens trains, and optical fibers, the
Robert cell is not only compact, but it can also achieve long

time delays with low loss. Furthermore, ultra-long delays on

the order of 100 ns can be attained using a coupled Robert cell

design.
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